投稿者名:アドミンエイト

炭化ケイ素の用途

Silicon carbide, commonly referred to as carborundum /karb@rndu/, is an extremely hard synthetic crystalline compound of silicon and carbon that has long been utilized for use as an abrasive and wear-resistant material in various fields such as refractories and ceramics, wear resistant parts production, light emitting diode substrate production and semiconductor substrate substrate for light emitting diodes (LEDs). Since the late 19th century it has also served as a semiconductor substrate in light emitting diodes (LED). Power electronics that operate at high temperatures and voltages also rely on this material for reliable operation. High-performance brake discs Silicon carbide (SiC), commonly referred to as carborundum since 1891, has become widely produced […]

炭化ケイ素の用途 続きを読む "

炭化ケイ素 - 最も軽く、最も硬く、最も熱伝導性の高いセラミック

炭化ケイ素は、現在入手可能なセラミック材料の中で最も軽く、最も硬く、熱伝導性の高い材料の一つです。高温下でも強度を保ち、酸や苛性カリにも強い。天然のモアッサナイトは非常に希少であるため、市販されているSiCのほとんどは合成で製造されています。モアッサナイトは、複雑な形状に粉砕するためのグリーンまたはビスケット形状、または焼結接合用途の焼結および反応接合されています。熱伝導率 (k) 炭化ケイ素の優れた熱伝導率は、内部抵抗と伝導損失によるジュール熱を放散させながら、パワーエレクトロニクス部品から発生する高熱を効果的に管理することを可能にします。さらに、熱膨張係数と硬度が低いため、特に光学用途に適しています。

炭化ケイ素 - 最も軽く、最も硬く、最も熱伝導性の高いセラミック 続きを読む "

炭化ケイ素密度

シリコンは電子機器に使われる半導体材料だが、バンドギャップが狭いため、電力用途には限界がある。しかし、炭化ケイ素(SiC)はバンドギャップが広いため、より高い温度と電圧で性能を発揮することができる。SiCは最も硬い材料のひとつで、硬度ではダイヤモンドと立方晶窒化ホウ素に匹敵する。SiCはグリーンまたはビスケット状で加工できますが、厳しい公差を達成するためには、機械加工またはさらに機械加工する前に、まず完全に焼結させる必要があります。バルク密度 炭化ケイ素(SiC)はケイ素と炭素からなる硬い化学化合物で、天然には宝石のモアッサナイトとして産出される。

炭化ケイ素密度 続きを読む "

炭化ケイ素繊維

Silicon Carbide Fiber (SiC Fibre) is an extremely durable yet lightweight material suitable for high temperature applications, featuring remarkable properties like high temperature oxidation resistance, hardness, stiffness, thermal stability and corrosion resistance. SiC fibres excel at operating in high-radiation environments, making them popular with nuclear power plant operatorss and also being utilized in ceramic matrix composites for improving strength and stealth of aerospace engine components. High Strength Silicon carbide fiber is an ideal material for creating high-performance metal matrix composites (MMCs), offering significant improvements in terms of abrasion resistance, specific strength, toughness, thermal expansion coefficient and electrical conductivity when used as reinforcement. Furthermore, silicon carbide provides twice the strength and

炭化ケイ素繊維 続きを読む "

炭化ケイ素半導体

Silicon is well known as the go-to material in semiconductor production, yet another material may become the next big thing for power applications – silicon carbide. Silicon Carbide (SiC) boasts superior electrical and thermal properties over silicon, with significantly higher breakdown voltage and lower turn-on resistance when it comes to high-speed switching applications. Due to these benefits, SiC stands out as a more suitable material than silicon for such tasks. Benefits Silicon carbide semiconductors are utilized in numerous electronic devices, from electric vehicles and solar energy systems to 5G technology. Their distinct thermal and electrical characteristics make them more cost-efficient than their silicon counterparts; hence their popularity has skyrocketed over

炭化ケイ素半導体 続きを読む "

炭化ケイ素グリップ強化

Increased friction on the gripping surface of your handgun is one of the best strategies you can employ to enhance performance, unlike using stippling which only lasts temporarily and requires regular upkeep. Silicon carbide applications offer permanent and highly long-term solutions. Epoxiing the frame ensures a strong bond, after which silicon carbide granules in your desired grit will be applied and permanently adhered to the epoxy surface. Increased Friction Silicon carbide (commonly referred to as “carborundum”) is a hard chemical compound composed of silicon and carbon that occurs naturally as the rare mineral moissanite; however, since 1893 mass production of this abrasive powder and crystal for use as abrasives began.

炭化ケイ素グリップ強化 続きを読む "

炭化ケイ素の特性と用途

Silicon carbide, better known by its acronym SiC, is one of the hardest synthetic materials on the market today and widely utilized for use in cutting tools due to its hardness, as well as refractories due to its resistance against high heat and thermal shock. It has also found widespread application as an anticorrosive coating material in electronics applications. SiC is an extremely durable hexagonal chemical compound with wide band-gap semiconductor properties. This allows SiC to withstand higher electric fields while operating at faster speeds. Conductivity Silicon carbide in its pure form acts like an electrical insulator; however, by adding impurities or dopants (dopants are used to add dopants that

炭化ケイ素の特性と用途 続きを読む "

工業炉用炭化ケイ素発熱体

Silicon carbide is an extremely resilient material which can withstand high temperatures without shattering or cracking, making them suitable for use in many industrial furnaces. However, their lifespan is limited by how much power can be applied; their resistance changes with temperature and time. Corrosion Resistant Silicon carbide is an extremely hard crystalline compound of silicon and carbon that has long been utilized as an industrial material. From sandpaper to cutting tools, it is used in everything from tubular heating elements for industrial furnaces to pump parts, rocket engines and semiconducting substrates for light-emitting diodes. Silicon carbide heating elements owe their longevity and energy efficiency to an effect known as

工業炉用炭化ケイ素発熱体 続きを読む "

炭化ケイ素は何に使われるのか?

炭化ケイ素(SiC)は、電気自動車のトラクション・インバーターに見られるような高電圧パワー半導体デバイスに特に有益な、その汎用性の高い特性により、産業界で広く利用されています。この耐火物およびセラミック材料のようなセラミック材料は、高熱および熱衝撃に対する耐性を誇り、優れた機械的強度と非常に低い膨張率を有しています。炭化ケイ素は、安定した化学的特性、高い熱伝導性、低い膨張係数、耐摩耗性により、様々な工業プロセスで広く利用されている硬くて丈夫な材料です。炭化ケイ素は、砥石、サンドペーパー、研磨ベルト、オイルストーン、研磨ブロックなど、さまざまな研磨製品に加工できます。

炭化ケイ素は何に使われるのか? 続きを読む "

炭化ケイ素ノズル

炭化ケイ素製ノズルは、炭化タングステン製ノズルに比べて寿命が長く、作業者の疲労を軽減するために5分の1まで軽量化されています。ノズルは、液体、気体、微粒子の流れを制御する重要な工業部品です。SiCノズルは、その卓越した耐久性、熱安定性、耐薬品性、その他のユニークな特性により、現代産業において不可欠な要素となっています。高温耐性 炭化ケイ素(カーボランダムまたはSiC)は、ケイ素と炭素からなる不滅の化合物です。天然には希少な宝石のモアッサナイトとして発見されましたが、この化合物の大量生産は1893年に粉末または結晶として始まりました。

炭化ケイ素ノズル 続きを読む "

jaJapanese
上部へスクロール